找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 4275|回复: 1

[其他] 纵观当今CAE软件的发展,具有这五大发展趋势!

[复制链接]

9

主题

19

回帖

330

积分

机械村良民

UID
457
威望
0
机械币
62
活力
5
发表于 2017-5-17 14:07:51 | 显示全部楼层 |阅读模式
国际上早在60年代初就开始投入大量的人力和物力开发有限元分析程序,但真正的CAE软件是诞生于70年代初期,而近15年则是CAE软件商品化的发展阶段,CAE开发商为满足市场需求和适应计算机硬、软件技术的迅速发展,在大力推销其软件产品的同时,对软件的功能、性能,用户界面和前、后处理能力,都进行了大幅度的改进与扩充。这就使得目前市场上知名的CAE软件,在功能、性能、易用性、可靠性以及对运行环境的适应性方面,基本上满足了用户的当前需求,从而帮助用户解决了成千上万个工程实际问题,同时也为科学技术的发展和工程应用做出了不可磨灭的贡献。目前流行的CAE分析软件主要有NASTRAN、 ADINA 、ANSYS、ABAQUS、MARC、MAGSOFT、COSMOS等。MSC-NASTRAN软件因为和NASA的特殊关系,在航空航天领域有着很高的地位,它以最早期的主要用于航空航天方面的线性有限元分析系统为基础,兼并了PDA公司的PATRAN,又在以冲击、接触为特长的DYNA3D的基础上组织开发了DYTRAN。近来又兼并了非线性分析软件MARC,成为目前世界上规模最大的有限元分析系统。ANSYS软件致力于耦合场的分析计算,能够进行结构、流体、热、电磁四种场的计算,已博得了世界上数千家用户的钟爱。ADINA非线性有限元分析软件由著名的有限元专家、麻省理工学院的 K.J.Bathe教授领导开发,其单一系统即可进行结构、流体、热的耦合计算。并同时具有隐式和显式两种时间积分算法。由于其在非线性求解、流固耦合分析等方面的强大功能,迅速成为有限元分析软件的后起之秀,现已成为非线性分析计算的首选软件。

纵观当今CAE软件的发展有以下趋势:

1、与CAD软件的无缝集成
当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。为了满足工程师快捷地解决复杂工程问题的要求,许多商业化有限元分析软件都开发了和著名的CAD软件(例如Pro/ENGINEER、Unigraphics、 SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的接口。有些CAE软件为了实现和CAD软件的无缝集成而采用了CAD的建模技术,如ADINA软件由于采用了基于Parasolid内核的实体建模技术,能和以Parasolid为核心的CAD软件(如 Unigraphics、SolidEdge、SolidWorks)实现真正无缝的双向数据交换。

9

主题

19

回帖

330

积分

机械村良民

UID
457
威望
0
机械币
62
活力
5
 楼主| 发表于 2017-5-17 14:08:19 | 显示全部楼层
2、更为强大的网格处理能力
有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。由于结构离散后的网格质量直接影响到求解时间及求解结果的正确性与否,近年来各软件开发商都加大了其在网格处理方面的投入,使网格生成的质量和效率都有了很大的提高,但在有些方面却一直没有得到改进,如对三维实体模型进行自动六面体网格划分和根据求解结果对模型进行自适应网格划分,除了个别商业软件做得较好外,大多数分析软件仍然没有此功能。自动六面体网格划分是指对三维实体模型程序能自动的划分出六面体网格单元,现在大多数软件都能采用映射、拖拉、扫略等功能生成六面体单元,但这些功能都只能对简单规则模型适用,对于复杂的三维模型则只能采用自动四面体网格划分技术生成四面体单元。对于四面体单元,如果不使用中间节点,在很多问题中将会产生不正确的结果,如果使用中间节点将会引起求解时间、收敛速度等方面的一系列问题,因此人们迫切的希望自动六面体网格功能的出现。自适应性网格划分是指在现有网格基础上,根据有限元计算结果估计计算误差、重新划分网格和再计算的一个循环过程。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。

3、由求解线性问题发展到求解非线性问题
随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,例如薄板成形就要求同时考虑结构的大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡胶、陶瓷、混凝土及岩土等材料进行分析或需考虑材料的塑性、蠕变效应时则必须考虑材料非线性。众所周知,非线性问题的求解是很复杂的,它不仅涉及到很多专门的数学问题,还必须掌握一定的理论知识和求解技巧,学习起来也较为困难。为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,如ADINA、ABAQUS等。它们的共同特点是具有高效的非线性求解器、丰富而实用的非线性材料库,ADINA还同时具有隐式和显式两种时间积分方法。

4、由单一结构场求解发展到耦合场问题的求解
有限元分析方法最早应用于航空航天领域,主要用来求解线性结构问题,实践证明这是一种非常有效的数值分析方法。而且从理论上也已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。现在用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即"热力耦合"的问题。当流体在弯管中流动时,流体压力会使弯管产生变形,而管的变形又反过来影响到流体的流动„„这就需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓"流固耦合"的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。

5、程序面向用户的开放性
随着商业化的提高,各软件开发商为了扩大自己的市场份额,满足用户的需求,在软件的功能、易用性等方面花费了大量的投资,但由于用户的要求千差万别,不管他们怎样努力也不可能满足所有用户的要求,因此必须给用户一个开放的环境,允许用户根据自己的实际情况对软件进行扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热本构、流体本构)、用户自定义流场边界条件、用户自定义结构断裂判据和裂纹扩展规律等等。

关注有限元的理论发展,采用最先进的算法技术,扩充软件的能,提高软件性能以满足用户不断增长的需求,是CAE软件开发商的主攻目标,也是其产品持续占有市场,求得生存和发展的根本之道。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|机械村 ( 渝ICP备17010994号-1|渝公网安备50022702001048号 )

GMT+8, 2024-11-24 01:38 , Processed in 0.031047 second(s), 5 queries , Gzip On, Redis On.

Powered by 机械村

Copyright © 2012- Jixiecun.com

快速回复 返回顶部 返回列表