找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 8299|回复: 9

[质量管理] 品质QC七大手法及品质检验标准是什么?

[复制链接]

5

主题

6

回帖

126

积分

助理工程师

UID
1416
机械币
42
阅读权限
30
发表于 2013-3-27 14:02:07 | 显示全部楼层 |阅读模式
RT,品质QC七大手法及品质检验标准是什么?

129

主题

85

回帖

3629

积分

副高工程师

UID
482
机械币
680
阅读权限
50
发表于 2013-3-27 15:36:50 | 显示全部楼层
管新七大手法,也叫品管新七大工具,其作用主要是用较便捷的手法来解决一些管理上的问题,与原来的“旧”品管七大手法相比,它主要应用在中高层管理上,而旧七手法主要应用在具体的实际工作中。因此,新七大手法应用于一些管理体系比较严谨和管理水准比较高的公司。

一、起源
新旧七种工具都是由日本人总结出来的。日本人在提出旧七种工具推行并获得成功之后,1979年又提出新七种工具。之所以称之为“七种工具”,是因为日本古代武士在出阵作战时,经常携带有七种武器,所谓七种工具就是沿用了七种武器。
有用的质量统计管理工具当然不止七种。除了新旧七种工具以外,常用的工具还有实验设计、分布图、推移图等。


二、旧七种工具
QC旧七大手法指的是:检查表、层别法、柏拉图、因果图、散布图、直方图、管制图。
从某种意义上讲,推行QC七大手法的情况,一定程度上表明了公司管理的先进程度。这些手法的应用之成败,将成为公司升级市场的一个重要方面:几乎所有的OEM客户,都会把统计技术应用情况作为审核的重要方面,例如TDI、MOTOROLA等。

三、新七种工具
QC新七大手法指的是:关系图法、KJ法、系统图法、矩阵图法、矩阵数据分析法、PDPC法、网络图法。
相对而言,新七大手法在世界上的推广应用远不如旧七大手法,也从未成为顾客审核的重要方面。

点评

详细、全面,好帖!点赞  发表于 2016-1-13 17:23

129

主题

85

回帖

3629

积分

副高工程师

UID
482
机械币
680
阅读权限
50
发表于 2013-3-27 18:38:16 | 显示全部楼层
QC七大手法

检查表(Tally Sheet)

检查表是利用统计表对数据进行整理和初步原因分析的一种工具,其格式可多种多样,这种方法虽然较简单,但实用有效,主要作为记录或者点检所用。

数据分层法(DataStratification)

数据分层法又称为层别法就是将性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。因为在实际生产中,影响质量变动的因素很多,如果不把这些困素区别开来,则难以得出变化的规律。数据分层可根据实际情况按多种方式进行。例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,按原材料成分进行分层,按检查手段,按使用条件进行分层,按不同缺陷项目进行分层,等等。数据分层法经常与上述的统计分析表结合使用。
数据分层法的应用,主要是一种系统概念,即在于要处理相当复杂的资料,就得懂得如何把这些资料加以有系统、有目的地加以分门别类的归纳及统计。
科学管理强调的是以管理的技法,来弥补以往靠经验、靠视觉判断的管理的不足。而此管理技法,除了建立正确的理念外,更需要有数据的运用,才有办法进行工作解析及采取正确的措施。
如何建立原始的数据及将这些数据依据所需要的目的进行集计,也是诸多品管手法的最基础工作。举个例子:我国航空市场近几年随着开放而竞争日趋激烈,航空公司为了争取市场除了加强各种措施外,也在服务品质方面下工夫。我们也可以经常在航机上看到客户满意度的调查。此调查是通过调查表来进行的。调查表的设计通常分为地面的服务品质及航机上的服务品质。地面又分为订票,候机;航机又分为空服态度,餐饮,卫生等。透过这些调查,将这些数据予以集计,就可得到从何处加强服务品质了。

排列图(Pareto Diagram)
排列图又称为柏拉图、重点分析图、ABC分析图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。柏拉图最早用排列图分析社会财富分布的状况,他发现当时意大利80%财富集中在20%的人手里,后来人们发现很多场合都服从这一规律,于是称之为Pareto定律。后来美国质量管理专家朱兰博士运用柏拉图的统计图加以延伸将其用于质量管理。排列图是分析和寻找影响质量主原因素的一种工具,其形式用双直角坐标图,左边纵坐标表示频数(如件数 金额等),右边纵坐标表示频率(如百分比表示)。分折线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左向右排列。通过对排列图的观察分析可抓住影响质量的主原因素。这种方法实际上不仅在质量管理中,在其他许多管理工作中,例如在库存管理中,都有是十分有用的。
排列图在质量管理过程中,要解决的问题很多,但往往不知从哪里着手,但事实上大部分的问题,只要能找出几个影响较大的原因,并加以处置及控制,就可解决问题的80%以上。柏拉图是根据归集的数据,以不良原因,不良状况发生的现象,有系统地加以项目别(层别)分类,计算出各项目别所产生的数据(如不良率,损失金额)及所占的比例,再依照大小顺序排列,再加上累积值的图形。
在工厂或办公室里,把低效率,缺损,制品不良等损失按其原因别或现象别,也可换算成损失金额的80%以上的项目加以追究处理,这就是所谓的柏拉图分析。
柏拉图使用以层别法的项目别(现象别)为前提,依经顺位调整过后的统计表才能制成柏拉图。
柏拉图分析的步骤:
(1) 将要处置的事,以状况(现象)或原因加以层别。  
(2) 纵轴虽可以表示件数,但最好以金额表示比较强烈。  
(3) 决定搜集资料的期间,自何时至何时,作为柏拉图资料的依据,期限间尽可能定期。  
(4) 各项目依照合半之大小顺位左至右排列在横轴上。  
(5) 绘上柱状图。  
(6) 连接累积曲线。

直方图(Histogram)

在质量管理中,如何预测并监控产品质量状况?如何对质量波动进行分析?直方图就是一目了然地把这些问题图表化处理的工具。它通过对收集到的貌似无序的数据进行处理,来反映产品质量的分布情况,判断和预测产品质量及不合格率。
直方图又称质量分布图,柱状图,它是表示资料变化情况的一种主要工具。用直方图可以解析出资料的规则性,比较直观地看出产品质量特性的分布状态,对於资料分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉学的概念,首先要对资料进行分组,因此如何合理分组是其中的关键问题。按组距相等的原则进行的两个关键数位是分组数和组距。是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图。
作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。具体来说,作直方图的目的有:
①判断一批已加工完毕的产品;
②验证工序的稳定性;
③为计算工序能力搜集有关数据。
直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。
直方图的作用
(1)显示质量波动的状态;
(2)较直观地传递有关过程质量状况的信息;
(3)通过研究质量波动状况之后,就能掌握过程的状况,从而确定在什么地方集中力量进行质量改进工作。
直方图法在应用中常见的错误和注意事项
a. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。
b. 组数 k 选用不当,k 偏大或偏小,都会造成对分布状态的判断有误。
c. 直方图一般适用于计量值数据,但在某些情况下也适用于计数值数据,这要看绘制直方图的目的而定。
d. 图形不完整,标注不齐全,直方图上应标注:公差范围线、平均值 的位置(点画线表示)不能与公差中心M相混淆;图的右上角标出:N、S、C p或 CPK.

因果分析图(Characteristic Diagram)

因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。因果分析图是一种充分发动员工动脑筋,查原因,集思广益的好办法,也特别适合于工作小组中实行质量的民主管理。当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。
某项结果之形成,必定有原因,应设法利用图解法找出其因。首先提出了这个概念的是日本品管权威石川馨博士,所以特性原因图又称[石川图]。因果分析图,可使用在一般管理及工作改善的各种阶段,特别是树立意识的初期,易于使问题的原因明朗化,从而设计步骤解决问题。
分析图使用步骤:
步骤1:召集与此问题相关的,有经验的人员,人数最好4-10人。  
步骤2:挂一张大白纸,准备2-3支色笔。  
步骤3:由集合的人员就影响问题的原因发言,发言内容记入图上,中途不可批评或质问(脑力激荡 法)。  
步骤4:时间大约1个小时,搜集20-30个原因则可结束。  
步骤5:就所搜集的原因,何者影响最大,再由大轮流发言,经大家磋商后,认为影响较大予圈上红色圈。  
步骤6:与步骤5一样,针对已圈上一个红圈的,若认为最重要的可以再圈上两圈,三圈。 步骤7:重新画一张原因图,未上圈的予于去除,圈数愈多的列为最优先处理。  
因果分析图提供的是抓取重要原因的工具,所以参加的人员应包含对此项工作具有经验者,才易奏效。 直方图(Histogram) 直方图又称柱状图,它是表示数据变化情况的一种主要工具。用直方图可以将杂乱无章的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对于资料中心值或分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉到一些统计学的概念,首先要对数据进行分组,因此如何合理分组是其中的关键问题。分组通常是按组距相等的原则进行的两个关键数字是分组数和组距。

散布图(Scatter Diagram)
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。这种问题在实际生产中也是常见的,例如热处理时淬火温度与工件硬度之间的关系,某种元素在材料中的含量与材料强度的关系等。这种关系虽然存在,但又难以用精确的公式或函数关系表示,在这种情况下用相关图来分析就是很方便的。假定有一对变量x 和 y,x 表示某一种影响因素,y 表示某一质量特征值,通过实验或收集到的x 和 y 的数据,可以在坐标图上用点表示出来,根据点的分布特点,就可以判断 x和 y
的相关情况。  

在我们的生活及工作中,许多现象和原因,有些呈规则的关联,有些呈不规则形有关联。我们要了解它,就可借助散布图统计手法来判断它们之间的相关关系。

控制图(Control Chart)

控制图又称为管制图。由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在1924年首先提出管制图使用后,管制图就一直成为科学管理的一个重要工具,特别在质量管理方面成了一个不可或缺的管理工具。它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用控制图分析生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类是供管理用的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
统计管理方法是进行质量控制的有效工具,但在应用中必须注意以下几个问题,否则的话就得不到应有的效果。这些问题主要是:1 )数据有误。数据有误可能是两种原因造成的,一是人为的使用有误数据,二是由于未真正掌握统计方法;2
)数据的采集方法不正确。如果抽样方法本身有误则其后的分析方法再正确也是无用的;3) 数据的记录,抄写有误;4
)异常值的处理。通常在生产过程取得的数据中总是含有一些异常值的,它们会导致分析结果有误。  

品质检验标准一般规定了对参数进行检验的标准方法。

129

主题

85

回帖

3629

积分

副高工程师

UID
482
机械币
680
阅读权限
50
发表于 2013-3-27 18:38:33 | 显示全部楼层
够详细了吧

5

主题

6

回帖

126

积分

助理工程师

UID
1416
机械币
42
阅读权限
30
 楼主| 发表于 2013-3-27 18:39:07 | 显示全部楼层
LUOLIN 发表于 2013-3-27 18:38
够详细了吧

嗯,太好了,谢谢大侠!

11

主题

13

回帖

426

积分

机械操作工

UID
762
机械币
83
阅读权限
20
发表于 2013-7-10 10:25:46 | 显示全部楼层
好帖,搞质量的顶起来!!!

5

主题

26

回帖

180

积分

助理工程师

UID
10764
机械币
60
阅读权限
30
发表于 2013-9-4 14:59:44 | 显示全部楼层
楼主辛苦了,学习下。

12

主题

12

回帖

1035

积分

助理工程师

UID
1345
机械币
204
阅读权限
30
发表于 2013-10-23 15:17:30 | 显示全部楼层
LUOLIN 发表于 2013-3-27 18:38
QC七大手法

检查表(Tally Sheet)

强人,牛啊

0

主题

60

回帖

25

积分

初入机械村

UID
21101
机械币
7
阅读权限
10
发表于 2015-8-11 18:35:56 | 显示全部楼层
感谢楼主无私分享
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|机械村 ( 渝ICP备17010994号-1|渝公网安备50022702001048号 )

GMT+8, 2025-1-18 18:02 , Processed in 0.028507 second(s), 7 queries , Gzip On, Redis On.

Powered by 机械村

Copyright © 2012- Jixiecun.com

快速回复 返回顶部 返回列表