7. 全程序无干预切削加工技术 “全程序无人干预”加工,是指被加工工件安装在数控机床后,在没有人工干预的状态下,一次程序启动完成加工、检测过程。它将过去产品质量和加工效率依赖于人员技能水平的传统加工形式,转变为由全程序不干预加工控制和设备功能进行保证的新形式。实现航空发动机零件自动化、智能化切削加工。全程序无人干预加工的主要特点: (1)零件数控加工程序优化后,切削参数能满足无干预(或减少干预)加工的需要,加工过程按100%倍率进行,操作者无需调整进给倍率。 (2)增加或调整进退刀位置,方便加工过程中的刀片更换和尺寸测量,操作者无需手动调整停刀位置。 (3)零件加工工序完成刀具寿命统计,实现切削加工过程完全自动换刀,操作者无需过多监控加工过程。 (4)通过固化加工刀柄、刀具、装夹,控制过程输入值的正确性,保证零件加工的主要尺寸及配合尺寸质量可控,靠近尺寸中差 (5) 能充分利用M00(暂停)MSG (信息提示),等机床功能,提升无人干预加工过程的适应性。 “全程序无人干预”技术不仅预置防错纠错功能,消除切削加工过程中的随机误差,增强操作系统的可靠性,同时还需进一步挖掘潜在的设备功能,逐步融合自动对刀、在线测量和自动补偿技术,减少加工中间环节,实现单人多机操作,提升生产效率,保证产品质量,降低制造成本和操作人员劳动强度。全程序无干预切削加工涉及自动换刀、刀具切削时间统计、刀具寿命监控、在线测量技术:数控仿真加工技术。
航空发动机切削技术发展策略建议 (1)运用新型高性能刀具,完善硬件、软件配置。 航空发动机零件结构复杂,大量的薄壁件,加工变形严重,对刀具的刚性、精度要求高。高性能刀具是提高航空发动机切削技术水平的强劲动力。因此应用高性能刀具解决切削加工问题是必然趋势。同时要配备先进的刀柄等硬件和加工仿真所必须的软件。要针对涡轮机匣、风扇机匣、涡轮盘、风扇盘、长轴、叶片、叶轮等典型关键零部件,提供完整的刀具配套和解决方案。以先进航空发动机对关键件、重要件研制需求为牵引,形成难加工材料典型零件高效切削基础技术研究能力。掌握有效提高加工精度、加工效率和加工表面质量的高效切削成熟工艺,向生产进行应用转化,实现稳定产品质量、缩短产品制造周期、降低制造成本等主要目标。
(2)突出重点,以点带面,解决关键。 切削难切削材料时由于切削力大,应选择有良好技术状态,而且有足够功率和刚性的机床及工艺装备,合理分配各加工阶段加工余量,避免零件产生变形。对被加工材料进行适当的热处理,通过热处理来改变被加工材料的性能和金相组织,达到改善材料切削加工性的目的。在对零件材料进行分级归类的基础上选择合适的刀具材料,确定合理的刀具几何参数。合理选择选择并优化切削用量。 研究编程技术和针对各种机床的后置处理技术。解决大型整体结构件和弱刚性零件的加工变形问题。研究各种工艺条件对变形的影响,以及减小加工变形的工艺措施。突出重点,以点带面。例如:整体叶盘、叶片和机匣这三类零件可以集中80%以上的关键技术,一旦突破,其他零件均可采用。着重对零件的关键加工工序进行研究,测定相应的已加工表面层状态(表面粗糙度、冷作硬化、残余应力及表面金相组织变化等),经疲劳试验后,确定控制零件表面完整性的技术条件,完善切削工艺。
研究高性能切削加工的刀具技术和高效切削的有效途径。对零件材料进行分级归类;选择合适的刀具材料;确定合理的刀具几何参数;根据切削用量的选择原则,合理选择切削用量。
(3)建立并开发智能切削数据库系统。 通过对加工特征进行分析和分类,结合对刀具结构的研究,确定基于切削加工特征的刀具选择原则和方法。建立基于切削加工特征的刀具选择数据库系统,实现刀具及其切削参数的智能选取[9]。航空发动机零件典型工艺特征的提取必须建立在多次仿真和试验的基础之上。通过航空发动机零件典型工艺特征提取、切削仿真分析及典型试件验证试验,提供典型工艺设计及数控加工之中关于刀具选用、切削参数选择、切削工艺优化方面的解决方案。
结束语:航空发动机制造企业应结合自身的特点确定切削技术发展重点,研发关键技术,突破典型零件切削综合优化试验及验证技术、基于工艺特征的切削数据库系统技术、切削物理仿真、高速高效切削、精度与表面质量控制、工件变形预测与补偿等技术。以切削效率、切削加工质量、切削经济性为切削优化目标,开展典型工艺特征切削数据库、切削物理仿真、切削表面完整性研究。建立综合优化试验设计体系和切削仿真试验验证体系。大力加强航空发动机切削加工过程控制技术、工艺研究和建设。强化培训,促进产、学、研、用有效结合,实现航空发动机制造技术水平不断提升。
|